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Abst rac t  

One approach to qualitative reasoning about dynamical systems is 

to extract qualitative information by searching or making queries on 

databases containing very large numbers of trajectories. The efficiency 

of such queries depends crucially upon finding an appropriate data 

structure for trajectories of dynamical systems. 

Suppose that a large number of parameterized trajectories y of 

a dynamical system evolving in RN are stored in a database. Let 

17 c RN denote a parameterized path in Euclidean space, and let 1 1  

denote a norm on the space of paths. In this paper, we define a data 

structure to represent trajectories of dynamical systems and sketch an 

algorithm which answers queries of the following form: 

Query. Return the trajectory y from the database which minimizes 

the norm 

11’1 - 7.11. 
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1 Introduction 

1.1 Queries about Trajectories 

Suppose that a large number of parameterized trajectories 7 of a dynamical 

system evolving in RN are stored in a database. Let 17 C RN denote a 

parameterized path in Euclidean space, and let 1 1  - 1 1  denote a norm on the 

space of paths to  be specified later. In this paper, we define a da ta  struc- 

ture to represent trajectories of dynamical systems and sketch algorithms to 

answer queries of the following forms: 

Query 1. Return the trajectory y from the database which minimizes the 

norm 

Query 2. Fix 6 > 0. Return all trajectories 7 from the database which 

satisfy 

1117 - 711 5 € *  

Query 3. If 7 is a segment of trajectory stored in the database, return the 

entire trajectory 7. 

Efficient algorithms to  answer these type of queries should prove useful 

for a number of applications. As an  example, consider the path-planning 

problem for a robotic arm. Suppose that a large number of feasible tra- 
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jectories of the robotic arm have been stored in a database. Let 7 be the 

desired path of the arm. It is not necessary that 77 be an actual feasible 

path. Query 1 would return the feasible trajectory y of the arm which is 

closest to the desired path 7. 

An another example, assume the database contains trajectories not from 

just one dynamical system, but from a parameterized family of dynamical 

systems. Let y denote a trajectory which is a periodic orbit. Then Query 2 

could be used to  gain information about those dynamical systems which also 

have a periodic orbit. In other words, queries such as these would be useful 

in extracting qualitative information about dynamical systems. 

As a final example, consider a database containing control trajectories 

for an aircraft, and assume that auxiliary information is attached to each 

control trajectory in the database. For example, those trajectories which 

enter into an unstable control regime somewhere along their flight path 

could be tagged. Let 77 denote a measured portion of the flight path of the 

aircraft. Then Query 1 would return the nearest full control trajectory in 

the database, which would include information about the stability of the 

trajectory. In other words, the query could be used as part of a supervisory 

control system. 

A database supporting these types of queries on trajectories needs an 
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efficient means of storing, accessing, searching, and comparing trajectories. 

In this paper, we describe a data  structure for trajectories, a related family of 

index functions for trajectories, and sketch algorithms to  answer the queries 

above. The work described in this paper is preliminary. For a more complete 

analysis of the issues raised here, a complexity analysis of the algorithms, 

and a discussion of implementation issues, see [9]. 

The da ta  structure we describe is closely related to  hashing methods for 

curves that  have been used in computer vision; see [13], [16], and (111. A 

related means of extracting qualitative information from dynamical systems 

is described in [l] and [2]. 

In Section 2 we review the relevant facts about trajectories of differential 

equations and define different data  structures t o  store trajectories. In Sec- 

tion 3, we show how these data  structures can be used to  answer the queries 

above. Section 4 contains some concluding remarks. The remainder of this 

introduction discusses this work from the viewpoint of extensible databases. 

1.2 Extensible Databases 

Imagine an extensible relational database supporting the basic data type of 

trajectory, as well as the more traditional data  types of string, integer, float, 

etc. The inclusion of this new data  type also requires that new operators be 
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supported, new storage and access methods be developed, and new methods 

of optimizing queries be found. 

For example, i t  is important that the database support the storage and 

retrieval of trajectories of an arbitrarily large size. It is also important that  

operators defined on the entire trajectory be supported, such as operators 

returning various temporal and spatial averages. Our viewpoint is to look 

for specific data  structures and algorithms to handle the storage, access, 

and querying of trajectories. This is not the only viewpoint that  has been 

proposed. 

Another viewpoint is to change the relational model as little as possible 

and build a complete extensible DBMS on top of it.  For example, Stone- 

breaker [14] describes a mechanism for a user to register new abstract data  

types into the University version of Ingres. Because of the built-in access 

methods used by Ingres, the new data types must occupy a fixed amount 

of space. Still another viewpoint is to provide a modular and modifiable 

system on top of which extensible databases for specific applications can be 

built. The Exodus DBMS described in [7] is an example of such an approach. 

See [6] for a recent survey covering some of these issues and detailing other 

approaches. 

The queries above would not make very much sense for a traditional 



relational database. On the other hand, queries such as these are natural 

queries for an extensible relational database of trajectories. They are also 

typical of the queries found in computational geometry; see [12]. Query 1 is 

an example of a nearest neighbor query, while Query 2 is an example of a 

fixed-radius near neighbor query. Bentley [4] considers both of the queries 

for the case of points in Euclidean space. 

It is also important t o  understand that while Query 3 does not make 

sense in general for spatial curves, i t  is meaningful for trajectories of dif- 

ferentid equations. Recall that a trajectory of a differential equation is 

determined once the initial condition and defining equation are specified; 

see [3], for example. This means, in principle, that  given any point on the 

trajectory, that  point together with the defining equation is sufficient to de- 

termine the entire trajectory. Alternatively, given a sequence of points on 

the trajectory which is sufficient to specify the form of the differential equa- 

tion defining the dynamical system, the entire trajectory can be obtained. 

It is for these reasons that Query 3 makes sense for trajectories of dynamical 

sys tems. 
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2 Representatioiis of Paths 

2.1 Trajectories 

In this section, we recall some basic facts and defintions about trajectories 

of differential equations. Let D, = d/dx,. A vectorfield 

N 
E = apD,  

on RN is determined by specifying N functions 

a, : RN - R. 
We also denote  the vector field by E,. In this paper, we will consider only 

vector fields with polynomial coefficients; that is, the functions a l ,  . . . , aN 

are all polynomials in 21,. . . , XN. A parameterized path 

y : [ to, t ' ]  C R - R N 

is called a trajectory of the dynamical system 



in  case i t  is the unique solution of the intitial value problem 

?( t )  = E,(z( t ) ) ,  z ( tO)  = r(t0). 

We distinguish between various representations of trajectories. 

Spatial Curve Representation. In this representation, the trajectory is 

viewed simply as the set of points in RN which comprise it.  

Parameterized Path Representation. In this representation, the tra- 

jectory is viewed as a map 

7 : [ tO,t ' ]  c R - RN. 

We may pass from the spatial curve representation to the parameter- 

ized path representation by parameterizing the curve using arclength. 

Vector Field/Reference Point Representation. In this representation, 

we identify the trajectory with a pair ( E , R ) ,  consisting of a vector 

field E and a reference or initial point R, where the trajectory is the 

solution of the initial value problem 

k ( t )  = E ( z ( t ) ) ,  ~ ( t ' )  = R. 

Note that the Vector Field/Reference Point representation, or VEFREP, 

is not unique. Indeed, several different vector fields could have a given spatial 
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curve as a trajectory, while any point along the spatial curve could serve as 

the initial value. Even so, as we will see in later sections, this representation 

is convenient for query processing. 

2.2 Rectifying Trees 

In this section, we give an algorithm whose input is a parameterized path 

77 : [ t O , t l ]  C R - R N , 

and whose output is a labeled, rooted binary tree. We assume for conveniece 

that to = 0 and t' = 1; if not, we can reparameterize. We do not assume 

that 7 is a trajectory of the dynamical system (1). This tree will be used in 

later sections to define polynomials a l ,  . . . , U N  with the property that 7 is 

close t o  a trajectory of the dynamical system (1). 

To define the tree, we first fix a tolerance E > 0. The tree we define is a 

subset of the complete rooted binary tree. The height of a node is defined 

to be the length of the unique path connecting the node to  the root. The 

children of the root have height 1, their children height 2, etc. There are 2k 

children of height k: number them left to right from 1 to  2k. We assign two 

labels t o  the j t h  node v from the left a t  height k: 
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and 

We use the following stopping criterion to grow the tree. If a node has 

children TJ and TI’ with labels K and K’, respectively, and if 

then the nodes v and v’ are leaves. Here ( 1  ( 1  denotes the Euclidean norm. 

We denote by T(q)  the tree that arises in this fashion. This tree has a simple 

interpretation: the 0 labels represent points on the path 17, while the K labels 

represent approximate tangent vectors a t  those points. The tree is grown 

until the difference between two adjacent tangent vectors is uniformly small. 

2.3 Trees and Interpolating Vector Fields 

In the last section, we associated a tree T(7)  t o  each path 7 C RN. In 

this section, we associate a vector field E(7)  to each path using the tree. 

The vector field E(7)  is simply the vector field with polynomial coefficients 

which interpolates the labels (O(v), ~ ( T J ) )  

for all leaves TJ in T(7) .  Recall that O(v) is the point on the curve 7 corre- 

sponding to  the node v, and K ( T J )  is the approximate tangent to the curve 
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a t  that  point. 

Suppose that the tree corresponding to  the path 7 has K leaves. Once 

we fix a vector space basis of K monomials 

the equations (3) define a vector field 

N 

where u l ( x ) ,  . . . , U N ( X )  are polynomial functions of the form 

j = 1  

and the by are scalars. The equations (3) reduce to linear equations for the 

scalars b;. To write down these equations, let 211,.  . . , v~ denote the li' leaves 

of the tree T ( 7 ) ,  and K ~ ( I I ~ ) ,  for i = 1. .  . , N denote the N-components of 

the  vector K ( V ~ ) .  Then the  system (3) becomes 

for p = 1, ..., N .  

The number of leaves of the tree T ( 7 )  depends very strongly on the 

geometry of the path 7. As the complexity of the curve grows, so does 
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the degree of the polynomial coefficients of the vector field E(7).  For some 

applications, i t  is better t o  impose an upper bound on the degree of the 

polynomial coefficients of the vector field E(q) .  Let q denote this bound. In 

this case, we can define the vector field E(7)  by requiring that the coefficients 

by minimize the quantity 

where the minimum is over vector fields with polynomial coefficients of de- 

gree less than or equal to q.  See Davis [8] for explicit means of finding the 

coefficients b; satisfying these equations. 

2.4 Reference Points 

Let 

77 : [ t O , t l ]  C R - R N 

be a parametrized path, T(7)  the corresponding tree, and E ( 7 )  the asso- 

ciated vector field with polynomial coefficients. Consider the trajectory 

defined by the initial value problem 

i ( t )  = E,(z(t)), z(0) = q(t0).  

Let y denote this trajectory. In general, y is only an approximation to  the 

path 7. Define R(7) E RN as follows: if the path y and the unit sphere in 
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RN intersect, let R(q) denote this intersection; otherwise, let R(q) denote 

the closest point between the unit sphere and the trajectory y. 

To summarize, given a path 77 C RN, we have defined a rectification 

tree T ( q ) ,  a vector field E ( q ) ,  and a reference point R(q)  E RN, with the 

property that  there is a segment of the trajectory y which approximates the 

path q, where y is the solution of the initial value problem 

The pair (E(q ) ,R (q ) )  is called the VEFREP representation of the path q. 

It is now easy to  define an index or invariant associated with the path 

q. First, fix injective functions 

h, :Rn - {1,2, ...}, 

for each n = 1,2, .  . . Next, view the coefficients of the vector field E ( q )  as a 

K - N  vector, so that the pair ( E ( q ) , R ( v ) )  has ( K +  l )N components. Then 

the index associated with 77 is defined by 

This can be used to  hash the trajectory; see [9]. 
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3 Returning the Nearest Trajectory 

3.1 Proximity Problems 

In this section, we show that the VEFREP representation of a path reduces 

Queries 1 and 2 to the following queries: 

Query 1’. Given P points in RQ, preprocess the points in time Preprocess(P) 

so that given a query point we can determine in time Query(P) the point of 

the original set which is closest to i t ,  using storage Storage(P). 

Query 2’. Given P points in RQ, preprocess the points in time Preprocess(P) 

so that given a query point we can determine in time Query(P) all points 

of the original set which are within a distance of 6’ of i t ,  using storage 

Storage( P ) .  

Query 1’ is called the nearest neighbor problem, and Query 2’ is called 

the fixed radius near neighbor problem. For a general reference to  proximity 

problems such as these, see [la]. This reference also describes algorithms 

to solve these types of problems using techniques which we do not mention 

here, such as Voronoi diagrams. The naive exhaustive algorithm requires 

Storage(P) = O ( P )  

Query(P) = O(QP). 
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In [4], Bentley shows, with the assumption of sparsity, how to use a multi- 

dimensional divideand-conquer algorithm to achieve bounds 

In [5 ] ,  Bentley et. al., use a cell method and the assumption of sparsity to  

achieve expected bounds of 

Preprocess(P) = O ( P )  

Query(P) = 0(1), 

assuming that the original points are drawn independently from a uniform 

distribution of a bounded region. 

Both of these algorithms have constants which grow exponentially with 

the dimension. Because of this, it is doubtful whether either one could lead 

to  practical algorithms to answer Queries 1 and 2. 

3.2 The Algorithm 

In this section, we sketch an algorithm to answer Queries 1 - 3. For further 

details, see [9]. 
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Suppose that 71,. . . , yp are trajectories of the dynamicd system 

as a ranges over some parameter space. To each such trajectory y, let 

denote i ts  VEFREP representation. 

trajectories via  

We define a norm on the space of 

llrll = II(R(r), E(77))IL 

where the norm on the right hand side is the standard Euclidean norm. 

Given a parameterized path 77, Algorithm 1 below returns from the database 

the trajectory y which contains a segment which is closer t o  q than any other 

segment from any other trajectory in the database. Notice that this provides 

an answer to  both Query 1 and Query 3. Query 2 is handled in an analogous 

manner; again, see [9] for details. 

Algorithm 1. The input is a parameterized path q, and the output is the 

trajectory y from the database answering Query 1. Fix 6 > 0 and q > 1. 

Compute the vector field E of the VEFREP representations ( E , R )  in the 

algorithm using Equation 4. 

Step 1. This step is a precomputation. For each trajectory y,, i = 1,. . . , P ,  

compute its VEFREP representation (E(yi), R(y;)). 
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Step 2. Given a query path q, computeits VEFREP representation ( E ( T ) ,  R(q)). 

Step 3. Solve the nearest neighbor problem for query point (E(q) ,R(v) ) ,  

given the set of points 

Let ( E ,  R )  denote the resulting nearest neighbor 

Step 4. Compute the trajectory y which is the solution to  the initial value 

problem 

? ( t )  = E ( z ( t ) ) ,  ~ ( 0 )  = R. 

4 Conclusion 

In this paper, we have described preliminary work concerned with queries 

of databases containing trajectories of differential equations. Our eventual 

goal is to  build an extensible, relational database supporting these types of 

queries. 

Trajectories of differential equations have many different representations. 

For the types of queries considered here, we have chosen to represent pa- 

rameterized trajectories 

y : [ to, t ' ]  C R - R N 
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by a pair, consisting of a vector field E on RN with polynomial coefficients 

and a point R E RN such that the trajectory is the solution of the initial 

vdue problem: 

i ( t )  = E ( z ( t ) ) ,  z ( t o )  = R. 

We call this a VEFREP representation. 

Using the VEFREP representation, we have reduced Query 1 and Query 2 

to standard problems in the computational geometry of points in Euclidean 

space, the nearest neighbor problem, and the near neighbor problem, re- 

spec t i vel y. 

Much work remains to  be done: the efficiency and implementation of 

the algorithm needs to  be studied. We do not claim that the algorithm 

described here is necessarily the most practical for querying large databases 

of trajectories. On the other hand, i t  is simple enough that its properties 

can easily be understood and investigated. It is our hope that  this will lead 

to  more practical algorithms. 
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